Optimize Recycling


Optimizing Recycling: Criteria for Comparing and Improving Recycled Feedstocks in Building Products 

An HBN collaboration with StopWaste, a public agency responsible for reducing the waste stream in Alameda County, CA, with support from the San Francisco Department of the Environment, that examines the hazards, supply chains, and economic impacts of recycled feedstock streams in building products.  

Optimizing Recycling is designed to foster open, transparent, discussions between recycling authorities (from local to global), scrap processors, health and environmental researchers, recycling workers, fenceline communities, green chemists, product designers, process engineers, building owners, and building product manufacturers who share the goal of optimizing recycling’s benefits. 

This collaboration will be releasing reports on a rolling schedule; watch this space for new reports on recycled feedstocks.


Stopwaste whitepaper cover

Optimizing Recycling: Criteria for Comparing and Improving Recycled Feedstocks in Building Products  Global industry has made progress toward a world in which more efficient use of resources, including recycling, helps to reduce impacts on the natural systems that support life. However, contamination of recycled-content raw material with potentially toxic substances reduces feedstock value, impedes growth of recycling rates, and can endanger human and environmental health. This paper provides findings and recommendations about how progress in resource use efficiency and recycling can occur along with the production of healthier building products. This paper is based on the review of eleven common recycled-content feedstocks used to manufacture building materials that are sold in California’s San Francisco Bay Area. It provides manufacturers and purchasers of building products, government agencies, and the recycling industry with recommendations for optimizing recycled-content feedstocks in building products to increase their value, marketability and safety.

2015


FPF Report

Post-Consumer Polyethylene in Building Products  Polyethylene is the world’s most common plastic. It is used in packaging, food and beverage containers, and consumer products. Building product manufacturers sometimes use post-consumer recycled polyethylene bags and bottles in pipes and plastic lumber. This scrap usually has minimal contents of concern, but products like detergents stored in plastic packaging can remain. So-called “bio-degradation” agents in plastic bags also contaminate this feedstock and should never be used. The plastics recycling industry is developing protocols to screen out residual contaminants. Of greatest concern: Most polyethylene goes unrecycled in the United States due to problems in supply chain controls and the low price of virgin resins. This report examines ways to optimize the use of post-consumer polyethylene in building materials.

September 2016

 

FPF Report

Post-Consumer Flexible Polyurethane Foam Scrap Used In Building Products  Healthy Building Network’s research into current recycling practices for flexible polyurethane foam (FPF) indicates that most post-consumer feedstocks are contaminated with highly toxic flame retardants. Discussions of recycling FPF have centered around the human health and environmental hazards posed by the flame retardant PentaBDE, which the foam industry phased out a decade ago. But the flame retardants that have replaced PentaBDE present similar concerns. Manufacturers incorporate flame retardant-laden post-consumer FPF into new products, primarily bonded carpet cushion. Recycling and installation workers and building occupants, particularly crawling children, can be exposed to these toxic chemicals. The recent emergence of pre-consumer FPF scrap that is free of flame retardants is a great step toward a safer, more valuable feedstock, but more work is needed to track and label flame retardant-free FPF to ensure that future post-consumer foam is also flame retardant-free.

July 2016

 


improve recycling cover

To Increase The Use Of Recycled Content In Building Products: Reduce Health Hazards & Improve Feedstock Quality  The recycling industry has made significant strides toward a closed loop material system in which the materials that make up new products today will become the raw material used to manufacture products in the future. However, contamination in some sources of recycled content raw material (“feedstock”) contain potentially toxic substances that can devalue feedstocks, impede growth of recycling markets, and harm human and environmental health. Since May 2014, the Healthy Building Network, in collaboration with StopWaste and the San Francisco Department of Environment, has been evaluating 11 common post-consumer recycled-content feedstocks used in the manufacturing of building products. This paper is a distillation of that larger effort, and provides analysis on two major feedstocks found in building products: recycled PVC and glass cullet. This research partnership seeks to provide manufacturers, purchasers, government agencies, and the recycling industry with recommendations for optimizing the use of recycled content feedstocks in building products in order to increase their value, marketability and safety. This report was prepared in support of a research session at the 2015 Greenbuild conference in Washington, DC.

October 2015

 


Glass Cullet Report Cover

Post-Consumer Cullet In California  Source separation of waste streams and toxic content restrictions are crucial actions toward optimizing the value of recycled feedstocks in building products. HBN’s research on glass waste – known as cullet – reveals the multitude of economic and environmental benefits of these practices. The ability of fiber glass insulation manufacturers to incorporate cullet increases; the wasteful landfilling of discarded glass (nationally, only 28% is recycled) decreases. Manufacturers need less energy to produce insulation, leading to lower greenhouse gas emissions. Workers, surrounding neighborhoods, and the environment at large are exposed to fewer toxic contaminants. 

September 2015

 


Post-Consumer PVC Report cover image

Post-Consumer Polyvinyl Chloride In Building Products  New HBN research reveals that legacy toxic hazards are being reintroduced into our homes, schools and offices in recycled vinyl content that is routinely added to floors and other building products. Legacy substances used in PVC products, like lead, cadmium, and phthalates, are turning up in new products through the use of cheap recycled content. Funding for research on post-consumer PVC feedstock was provided by StopWaste and donors to the Healthy Building Network (HBN). It was conducted using an evaluative framework to optimize recycling developed by StopWaste, the San Francisco Department of the Environment, and HBN. This briefing paper on post-consumer recycled PVC is a prequel to a forthcoming white paper by this new collaboration. 

April 2015

 


Ground Rubber

Nylon 6 & Nylon 6, 6 Scrap 

Polyethylene (HDPE, LDPE, LLDPE) Scrap

Reclaimed Asphalt Pavement

Recycled Asphalt Shingles

Recycled Wood Fiber

Steel Scrap


Tags: none